

General Description: The approved units consist of V900 (traction) and H900 (hydraulic) elevator control panels within a NEMA 1 powder-coated carbon steel enclosure. The 14"L x 36"W x 65"H V900 panel may be floor or wallmounted. V900 panels larger than 14"L x 36"W x 65"H are floor-mounted only. The H900 panels are wall-mounted only.

3.0

LABORATORIES, LLC Applicant Company Name

1315 GREG STREET, SUITE 109

Contact Person

SPARKS, NV 89431

Mailing Address

(775) 358-5085 Telephone

DYNAMIC CERTIFICATION

E-mail Address

LaBrie@makeitright.net

I hereby agree to reimburse the Office of Statewide Health Planning and Development for the actual costs incurred by the verartment for review.

ignature of Applicant

Managing Partner Title

Date
Dynamic Certification Laboratories,
LLC
Company Namo

12/8/11

Fax (916) 654-2973

Darren Chan

Sacramento, CA 95826

Product Type

JOSEPH LA BRIE. S.E.

Office of Statewide Health Planning and Development

	Regi	Registered Design Professional Preparing the Report								
4.0		DYNAMIC	CERTIFICATION LAB							
		JOSEPH LA BRIE, S.E.	Company Name	Ð	SE-3566					
		Contact Name		Ca	alifornia License Number					
	1315 0	GREG STREET, SUITE 109, SPARKS, NV 894	,31							
			Mailing Address							
		(626) 445-0366		Li	aBrie@MakeItRight.net					
		Telephone			E-mail Address					
5.0		ornia Licensed Structural Engineer DYNAMIC	CERTIFICATION LAB		Report					
		DR. AHMAD ITANI, SE	Company Name		SE-5220					
	1	<i>Contact Name</i> I315 GREG STREET, SUITE 109, SPARKS, N	V 89431	C	alifornia License Number					
		(775) 358-5085	Mailing Address		ani@shaketest.com					
		Telephone		E	-mail Address					
	Anch	norage Pre-Approval								
		Anchorage is pre-approved under C (Separate application for anchorage Anchorage is not Pre-approved		equired)						
	Certi	fication Method								
70.	\boxtimes	Testing in accordance with:	⊠ ICC-ES	AC-156	Other (Please Specify):					
		Analysis								
		Experience data								
		Combination of Testing, Analysis, a	nd/or Experience I	Data (Please Sj	pecify): Testing					
	Teet	ing Laboratory (if applicable)								
8.0	rest	ing Laboratory (if applicable)								
0.0		DYNAMIC CERTIFICATION LABORATORIE	S, LLC	KELLY LAP	LACE, PROJECT ENGINEER					
		Company Name			Contact Name					
		1315 GREG ST	REET, STE 109		SPARKS, NV 89431					
		Mailing Address								
		(775) 358-5085	5		Kelly@shaketest.com					
		Telephone			E-mail:					

"Equitable Healthcare Accessibility for California"

13

La El

Office of Statewide Health Planning and Development

bd

0

_	M. R. Karim, SHFR S _{DS} (g) = 2.26 z/h = 1.0 Name & Title Special Seismic Certification Valid Up Condition of Approval (if any): Special Seismic Certification Valid Up	0									
0	OSHPD Approval (For Office Use Only) Signature & Date December 31, 20 Approval Expiration Da										
_	Calculations Others (Please Specify):										
	Image: Constraint of the second										
_	List of attachments supporting the special seismic certification of equipment or components:										
_	Tank(s) designed in accordance with ASME BPVC, 2007: U Yes 🛛 No										
	Overall dimensions and weight (or range thereof) = Tank(s) designed in accordance with ASME BPVC, 2007: Yes No										
	Equipment or Component fundamental period(s) = Sec										
	Height to Center of Gravity above base =										
	I_p (Importance factor) =1.5										
	C_d (Deflection amplification factor) =1.0										
	Ω_0 (System overstrength factor) =1.0										
	R (Response modification coefficient)=1.0										
S_1 (Spectral response acceleration at 1 second period) =											
	S_{DS} (Spectral response acceleration at short period) =										
	Design Basis of Equipment or Components (V/W) =										
	Equipment or Components @ grade designed in accordance with ASCE 7-05 Chapter 15: 🗌 Yes 🛛 No										
	Overall dimensions and weight (or range thereof) =SEE ATTACHMENT										
	z/h (Height factor ratio)=1.0 Equipment or Component fundamental period(s) =SEE ATTACHMENT Building period limits (if any) =NONE										
I_p (Importance factor) = 1.5											
	a_p (In-structure equipment or component amplification factor) =1.0 R_p (Equipment or component response modification factor) =2.5										
	S_{DS} (Spectral response acceleration at short period) = 2.26g										
	Design Basis of Equipment or Components $(F_{p}/W_{p}) = 1.63$										
	Design in accordance with ASCE 7-05 Chapter 13: 🛛 Yes 🗌 No										
	Approval Parameters										
		CALL FORMUL									

Special Seismic Certification Tested and Approved Units

Manufacturer: Elevator Controls

Product Line: Hydraulic/Traction Elevator Controls

Product Construction:

Cabinet is powder-coated carbon steel, NEMA 1.

Approved Options:

Equipment contained control boards, power supply, drive, fuses, terminals, relays, resistors, and additional components required to form a complete hydraulic/traction elevator control system.

Mounting Description:

Equipment was tested with both rigid wall and floor mounting.

Tested Units

		Cabinet	Dimensions	(inches)	.				Unit
Product Line	Model Number	Depth	Width	Height	Operating Weight (lb)	NEMA Rating	Mount	Sds level Approved	
	V900 (Large)	17	47	77	430	NEMA 1	Floor Mounted	2.26	UUT1
	V900 (Small)	14	36	65	230	NEMA 1	Wall Mounted	2.26	UUT2
Hydraulic / Traction Elevator		14					Floor Mounted		UUT5
Controls	H900 (Large)	14	36	48	160	NEMA 1	Wall Mounted	2.26	UUT3
	H900 (Small)	8	36	30	116	NEMA 1	Wall Mounted	2.26	UUT4

Approved Units

	Model Number	Cabinet Dimensions (inches)			Operating			
Product Line		Depth	Width	Height	Operating Weight (lb)	NEMA Rating	Mount	Sds level Approved
Hydraulic /	V900	14 to 17	36 to 47	65 to 77	230 to 430	NEMA 1	Floor or Wall Mounted*	2.26
Traction Elevator Controls	H900	8 to 14	36	30 to 48	116 to 160	NEMA 1	Wall Mounted	2.26

*Note: Only the V900 14" x 36" x 65" panel is approved for wall and floor mounting. All other V900 panels are floor-mounted.

UUT1 Unit Under Test Summary Sheet

Manufacturer: Elevator Controls

Product Line: Hydraulic/Traction Elevator Controls

Model Number: V900 (Large) Product Construction Summary:

Powder-coated carbon steel, NEMA 1

Options / Component Summary:

240VAC, control boards, transformer, power supply, drive, fuses, relays, resistors and additional components required for a complete elevator control panel.

	UUT Properties										
Operating Weight		Dim	ensions (inch	Lowest Natural Frequency (Hz)							
(lb)	Depth	W	idth	Height		Front-Back	Side-Side	Vertical			
430	17	2	17	77		6.5	11.5	17.0			
			Seismic	Test Paramet	ers						
Building Code	Test Criteria	Sds	z/h	lp	Aflx-H	Arig-H	Aflx-V	Arig-V			
CBC 2010	2010 ICC-ES AC156	2.26	1.0	1.5	3.62	2.71	1.51	0.6			

Note: The unit was visually inspected before and after the shake test and it was determined that the structural integrity of the component attachment system and force-resisting systems was maintained. The unit was working after the shake test and it was verified that it satisfied the functional requirements with equivalent results to that of the pre-test functionality check.

Unit Mounting Description:

UUT1, floor-mounted to shake table interface plate.

UUT1 was rigid floor-mounted to the DCL steel shake table interface plate with four 1/2-inch Grade 5 bolts, using the existing holes in the manufacturer-provided floor stand. The floor stand was welded to the base of the cabinet. The interface plate was attached to the shake table using M12 threaded rod, spaced approximately 8-inches on-center.

UUT2 Unit Under Test Summary Sheet

Manufacturer: Elevator Controls

Product Line: Hydraulic/Traction Elevator Controls

Model Number: V900 (Small) Product Construction Summary:

Powder-coated carbon steel, NEMA 1

Options / Component Summary:

240VAC, control boards, transformer, power supply, drive, fuses, relays, resistors and additional components required for a complete elevator control panel.

	UUT Properties										
Operating Weight		Dim	ensions (inch	Lowest Natural Frequency (Hz)							
(lb)	Depth	W	idth	Height		Front-Back	Side-Side	Vertical			
230	14		36	65		n/a	n/a	n/a			
			Seismic	Test Paramet	ers						
Building Code	Test Criteria	Sds	z/h	lp	Aflx-H	Arig-H	Aflx-V	Arig-V			
CBC 2010	2010 ICC-ES AC156	2.26	1.0	1.5	3.62	2.71	1.51	0.6			

Note: The unit was visually inspected before and after the shake test and it was determined that the structural integrity of the component attachment system and force-resisting systems was maintained. The unit was working after the shake test and it was verified that it satisfied the functional requirements with equivalent results to that of the pre-test functionality check.

Unit Mounting Description:

UUT2, wall-mounted to shake table interface frame.

UUT2 was wall-mounted to a rigid DCL-provided stud wall shake table interface frame using four 1/2-inch Grade 5 bolts, strut and strut nuts, utilizing the existing manufacturer-provided mounting holes. The interface frame was attached to the shake table using M12 threaded rod, spaced approximately 8-inches on-center.

UUT3 Unit Under Test Summary Sheet

Manufacturer: Elevator Controls

Product Line: Hydraulic/Traction Elevator Controls

Model Number: H900 (Large) Product Construction Summary:

Powder-coated carbon steel, NEMA 1

Options / Component Summary:

240VAC, control boards, transformer, power supply, fuses, relays, resistors and additional components required for a complete elevator control panel.

	UUT Properties										
Operating Weight		Dim	ensions (inch	Lowest Natural Frequency (Hz)							
(lb)	Depth	W	idth	Не	Height		Side-Side	Vertical			
160	14		36	48		n/a	n/a	n/a			
			Seismic	Test Paramet	ers						
Building Code	Test Criteria	Sds	z/h	lp	Aflx-H	Arig-H	Aflx-V	Arig-V			
CBC 2010	2010 ICC-ES AC156	2.26	1.0	1.5	3.62	2.71	1.51	0.6			

Note: The unit was visually inspected before and after the shake test and it was determined that the structural integrity of the component attachment system and force-resisting systems was maintained. The unit was working after the shake test and it was verified that it satisfied the functional requirements with equivalent results to that of the pre-test functionality check.

Unit Mounting Description:

UUT3, wall-mounted to shake table interface frame.

UUT3 was wall-mounted to a rigid DCL-provided stud wall shake table interface frame using four 1/2-inch Grade 5 bolts, strut and strut nuts, utilizing the existing manufacturer-provided mounting holes. The interface frame was attached to the shake table using M12 threaded rod, spaced approximately 8-inches on-center.

UUT4 Unit Under Test Summary Sheet

Manufacturer: Elevator Controls

Product Line: Hydraulic/Traction Elevator Controls

Model Number: H900 (Small) Product Construction Summary:

Powder-coated carbon steel, NEMA 1

Options / Component Summary:

240VAC, control boards, transformer, power supply, fuses, relays, resistors and additional components required for a complete elevator control panel.

	UUT Properties										
Operating Weight		Dim	ensions (inch	Lowest Natural Frequency (Hz)							
(lb)	Depth	W	idth	Height		Front-Back	Side-Side	Vertical			
116	8		36	30		n/a	n/a	n/a			
			Seismic	Test Paramet	ers						
Building Code	Test Criteria	Sds	z/h	lp	Aflx-H	Arig-H	Aflx-V	Arig-V			
CBC 2010	2010 ICC-ES AC156	2.26	1.0	1.5	3.62	2.71	1.51	0.6			

Note: The unit was visually inspected before and after the shake test and it was determined that the structural integrity of the component attachment system and force-resisting systems was maintained. The unit was working after the shake test and it was verified that it satisfied the functional requirements with equivalent results to that of the pre-test functionality check.

Unit Mounting Description:

UUT4, wall-mounted to shake table interface frame.

UUT4 was wall-mounted to a rigid DCL-provided stud wall shake table interface frame using four 1/2-inch Grade 5 bolts, strut and strut nuts, utilizing the existing manufacturer-provided mounting holes. The interface frame was attached to the shake table using M12 threaded rod, spaced approximately 8-inches on-center.

UUT5 Unit Under Test Summary Sheet

Manufacturer: Elevator Controls

Product Line: Hydraulic/Traction Elevator Controls

Model Number: V900 (Small) Product Construction Summary:

Powder-coated carbon steel, NEMA 1

Options / Component Summary:

240VAC, control boards, transformer, power supply, drive, fuses, relays, resistors and additional components required for a complete elevator control panel.

	UUT Properties									
Operating Weight		Dim	ensions (inch	Lowest Natural Frequency (Hz)						
(lb)	Depth	W	idth	Height		Front-Back	Side-Side	Vertical		
230	14		36	65		5.4	14.3	>33		
			Seismic	Test Paramet	ers					
Building Code	Test Criteria	Sds	z/h	lp	Aflx-H	Arig-H	Aflx-V	Arig-V		
CBC 2010	2010 ICC-ES AC156	2.26	1.0	1.5	3.62	2.71	1.51	0.6		

Note: The unit was visually inspected before and after the shake test and it was determined that the structural integrity of the component attachment system and force-resisting systems was maintained. The unit was working after the shake test and it was verified that it satisfied the functional requirements with equivalent results to that of the pre-test functionality check.

Unit Mounting Description:

UUT5, floor-mounted to shake table interface plate.

UUT5 was rigid floor-mounted to the DCL steel shake table interface plate with four 1/2-inch Grade 5 bolts, using the existing holes in the manufacturer-provided floor stand. The floor stand was welded to the base of the cabinet. The interface plate was attached to the shake table using M12 threaded rod, spaced approximately 8-inches on-center.

		COMPON	ENT IDENTIFICATIO	N MATRIX:	
COMPONENT NAME	COMPONENT MANUFACTURER	DESCRIPTION	MODEL	TEST IN UUT	рното
PIO9 Board	O9 Board Elevator Controls		PIO9	UUT1, UUT2, UUT3, UUT4, UUT5	
HLS7 Board	Elevator Controls	PCB	HLS7	UUT1, UUT2, UUT3, UUT4, UUT5	
IOEX Board	X Board Elevator Controls PCB		IOEX	UUT1, UUT2, UUT3, UUT4, UUT5	
LSSM Board	Board Elevator Controls PCB		LSSM	UUT1, UUT2, UUT5	
T1	T1 Pacific Transformer		31720	UUT1, UUT2, UUT3, UUT4, UUT5	

		COMPON	ENT IDENTIFICATIO	N MATRIX:	
COMPONENT NAME	COMPONENT MANUFACTURER	DESCRIPTION	MODEL	TEST IN UUT	рното
Power Supply	Power One	Power Supply	HB5-3/OVP-AG	UUT1, UUT2, UUT3, UUT4, UUT5	NL. OCC
Drive	Yaskawa	Drive	CIMR-LU2A0115DAA	UUT1	
Drive	Yaskawa	Drive	CIMR-LU2A0018DAA	UUT2, UUT5	•
Delta	Cutler Hammer	Motor Contactor	XTAE115G00B125	UUT1	
Delta	Cutler Hammer	Motor Contactor	XTAE018C10B016	UUT2, UUT5	

COMPONENT IDENTIFICATION MATRIX:									
COMPONENT NAME	COMPONENT MANUFACTURER	DESCRIPTION	MODEL	TEST IN UUT	рното				
Starter	Sprecher+Schuh	Starter	PCEC-032-600V- 120V	UUT4					
Starter	Sprecher+Schuh	Starter	PCEC-147-600V- 120V	UUT3					
Fuse Block 250V	Bussmann	Fuse Block	\$8000	UUT1, UUT2, UUT3, UUT4, UUT5					
Fuse Block 600V	Bussmann	Fuse Block	BM6031SQ	UUT1, UUT2, UUT5					
FL1 & FL2	Bussmann	Fuse	250V MDA-10A	UUT1, UUT2, UUT3, UUT4, UUT5					
F7 & F8	Bussmann	Fuse	250V MDA-4A	UUT1, UUT2, UUT3, UUT4, UUT5					
FPI2	Bussmann	Fuse	250V AGC-3A	UUT1, UUT2, UUT3, UUT4, UUT5					
FGP	Bussmann	Fuse	250V FNM-3A	UUT1, UUT2, UUT5					
Terminals	Magil	Power Block Terminals	1423572	UUT2, UUT5					
Terminals	Magil	Power Block Terminals	1433126	UUT1					

COMPONENT IDENTIFICATION MATRIX:									
COMPONENT NAME	COMPONENT MANUFACTURER	DESCRIPTION	MODEL	TEST IN UUT	рното				
BK2 Relay	Sprecher+Schuh	Relay	CA7-16C-01	UUT1, UUT2, UUT5					
Relay Socket	Idec	Relay Socket	SY4S-05	UUT1, UUT2, UUT3, UUT4, UUT5					
UTS Relay	Idec	Relay	RU4S-A110						
HX Relay	Idec	Relay	RU4S-D110	UUT3, UUT4					
P Relay	Idec	Relay	RU4S-D110						
AAX Relay	Idec	Relay	RU4S-D110						
LVL2 Relay	Idec	Relay	RU4S-D110	UUT1, UUT2,					
EQS Relay	Schrack	Relay	PT570024	UUT5					
BRBD	DC Components	Diode Bridge	MB3510						
Terminals	Wiedmuller	Panel Mount Terminals	SAK 4/EN	UUT1, UUT2, UUT3, UUT4, UUT5					
RG1 & RG2	Huntington	Resistor	FSE2000-5	UUT1	[·····································				
RG3	Ohmite	Resistor	C2000K20R	UUT1					
RBH	Huntington	Resistor	AST200-100	UUT1, UUT2, UUT5					
RBP & RBV	Huntington	Resistor	AST200-50	UUT1, UUT2, UUT5					
RBD1	Huntington	Resistor	AST200-1K	UUT1, UUT2, UUT5					
RBD2	Huntington	Resistor	AST200-500	UUT1, UUT2, UUT5					